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I. ABSTRACT
We report on the work carrie§ out under the support of

USAFOSR Grart No. AFOSR-80-0083. he thrust of this work was

the development of efficient and accurate finite element methods

for flow problems. Specific applications include periodic
acoustic problems, potential flow problems aﬁd incompressible

viscous flows. However, the theoretical analyses carried out

also have a direct bearing on the approximation of problems in

other areas, e.g., electromagnetics and elasticity. For the

particular fluids applications mentioned above, computer codes

implementinglthe algorithms have also been developed.
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IXI. DESCRIPTION OF WORK ACCOMPLISHED

L B O

A. Eigenvalue Problems

2 . |
13 The first problem we consider is the energy stability of the
% incompressible Navier-Stokes equations. This problem has the
*

following variational formulation: seek (u,p,v) €V x S x R
\l
£ such that
p
N
N * e
- (W*D-w=~-9divw =-v | Vu-Vw

4] Q

oy (1)
- J vdivu=o0
N Q

for all (w,y) €V x S. Here V and S are appropriately chosen
g Hilbert spaces and D is the deformation tensor of a given flow.
%: It is easily shown (1] that if the largest eigenvalue v of the
) problem (1) is smaller than the kinematic viscosity v of the
o _
.ﬁ given flow, then the given flow is stable in the energy sense.
$ We note that (1) is a linear eigenvalue problem which determines
* .
! stability regions for arbitrary perturbations, i.e., not infinitesimal.
4
;: The problem (1) is, however, not easily solvable. We therefore wish
\1
5 to solve the problem approximately. To this end we choose finite
; dimensional subspaces Vh CV and Sh < s and require that (1)
;3 hold for all (w,¥) € Vh b Sh. This leads to a linear generalized
z
3 algebraic eigenvalue problem of the form
L o
> * - =
o3 A D W B O} (W
¢ =V g I (2)
X p of \z] Plo o] \3
- We choose the spaces Vh and s" to be finite element spaces.
“
é Under certain conditions on these spaces, which are necessary for

the stability of the approximate problem, we have been able to
By
*
2
N
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prove that the approximate eigenvalues Vi converge to the exact
eigenvalues v* at an optimal rate. 1In addition, two computer
codes have been written which use different finite eleﬁent spaces
which satisfy the above mentioned conditions. The first uses a
triangulation of the type illustrated in the figure on the left
wherein the vector 'g is approximated by piecewise linear

polynomials in each triangle and the

Figure 1

scalar ¢ is approximated in a well defined subspaées of piecewise
constant functions in each triangle. The second code uses the element
on the right which again uses piecewise linear vectors on triangles,
but now uses scalars which are constant throughout the guadrilateral.
Our theory predicts that vh converges to v* quadratically in the
grid spacing and, of course, this is verified by our computational
results. The codes developed take advantage of the structure and
sparsity of the algebraic problem (2).

Another physical problem considered is that of acoustic

eigenvalue problems such as those described by the equation
Ap = Ap in (3)

Again this eigenvalue problem can be given a variational charac-

terization. We seek (u,9,A) €V x 3 x R such that
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for all (v,¥) € V x 5, where again V and S are suitable Hilbert
spaces. Approximations are defined as before. 1In this case we have
proved optimal error estimates for the eigenvalues A and eigen-
function pairs (u,9) and have developed codes to compute these
eigenvalues and eigenfunction, again using the two elements described
in the figure above.

The variational problems (1) and (4) are special cases of the

abstract mathematical problem: seek (u,p,A) € V1 x S1 x € such that J

a(u,v) + b;(v,9) = Ac(u,v)

(5)
Ad(¥,A)

b2 (u,¥)

for all (v,¥) €V, x S,. Here a, b;, b,, ¢ and d are sesqui-
linear forms defined on the appropriate Hilbert spaces. We have
been able to prove optimal error estimates for eigenvalue problems
of the type (5) for a variety of combinations of forms a, bl, etc.,
under reasonable hypothesis on these forms. For example, the cases
= b

bl = b2 with ¢ or 4d=0,5D0 with both ¢ and 4 # 0,

1 2
and b; # b,, all with a(u,v) coercive or weakly coercive have
been successfully analyzed and illustrative computer programs have

been implemented in each case. The various cases which have been con-

sidered describe a variety of physical examples including some

generalized non-self-adjoint acoustic eigenvalue problems, eigen-

value problems emanating from transmission line theory, etc.
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B. Inhomogeneous Navier-Stokes Equations
a Finite element methods for stationary viscous incompressible
gs flows were considered. Specifically, we consider the problem of
f} finding a velocity field u and a pressure field p which satisfy
[ V-u=g in QO
x
éé VAu - u-Vu + Vp = £ in Q (6)
’. u=q on T
;‘ : where QQ is a bounded region in ]R2 or IR3 with boundary T,
ES and where g, £, and g are given functions. Previous work [2]
13 on the topic‘considers the case g =0 and g = 0 only. The
Jé case g # 0 is important since usually such flows are driven at
3 the boundaries, e.g., by inflows. Our work on this topic included
i the following accomplishments:
? a) Under natural hypothesis on £, g, and g, the existence
;3 and uniqueness of weak solutions of (6) was proven. Adding
éi stability hypotheses on the finite element spaces, the existence
% and uniqueness of approximate finite element solutions was also
- displayed;
.% b) Optimal error estimates for the finite element discretiza-
ig tion were derived;
;3 c¢) The convergence behavior of iterative methods, i.e., the
lf Newton, chord and simple iteration methods, for the solution. of the
,§ discrete nonlinear algebraic equations resulting from the finite
}3 element discretization were analyzed. 1In particular, it was shown
% that the Newton method was quadratically convergent when one is
zé close enough to the exact solution of the discrete equations, and

PP T, WL TN L I B

TS, TR



i " b W e T e W LT it st A e i et AP
pd AT B L At A B R N e e . - R IR D o

RE]
A
6
gﬁ ) it was also shown that a simple iteration scheme is globally con-
. vergent whenever the solution of (6) is uniqué; and
ig d) Computer programs were written implementing some particﬁlar
*s choices of finite element spaces. These programs verified the
f theoretical results and also served to illustrate the implementation
fg of the algorithms developed.
g? A crucial step in developing good algorithms for the &pproxi-
y mation of the solution of (6) is choosing finite element spaces
%5 which satisfy the stability hypothesis alluded to in (a) above.
% We choose spaces YP and Sh in which to seek an approximation
_h gy and ph, respectively, to the solution of (1). Then the
és stability hypothesis takes the form
' [iaiv vPaa
; " sup 4 o > PPl vt e sh.
- vev =N
| |
" where u-ﬂl denotes the H!'-Sobolev norm. The crucial question
ﬁ ' . is whether or not '
- ‘
X W Yo > 0
15 uniformly in h, i.e., Yo is independent of h. For some obvious
'5 choices éf !ﬁ and Sh, Yo = 0 apd these are discarded. For
% some other choices, such as bilinear velocities and constant
'2 pressures, Y, # 0 once the "checkerboa;d" pressure mode is )
§ removed. However, there is some evidence that xh depends on.
;i h, i.e.‘ yh = 0. This results in possibly bad pressure ap- . 1
né proximations which must be filtered in order to obtain useful
~ﬁ pressures. On the other hand, the velocity approximations are
kY
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optimally accurate without any filtering. Computer programs imple-
menting a variety of low order elements have been developed. These

programs produce accurate velocity approximations.

C. Mixed Finite Element Methods for Potential Flows

This work involves the approximation of problems of the type

u=ve in 0
(7)
u-n=£ on Iy '

¢=g on T

where rh n rb = I, the boundary of 0, £, g and  F are given func-
tions, and u and ¢ are, for instance, an unknown velocity

field and potential field. The simple problem (7) is equivalent

- to

¢ =g  on T VA - (8)

However, we are interested in discretizing (7) directly, since in
more general settir s, pre' a2ms of the type (7) may not always be

recast into a form .s.ailar to (8). Previous work [3] on finite




element methods for the approximation to the solution of (7)
h h

A ’ resulted in error estimates for the error u - u, u being
o '
oy the discrete solution, in the norm
K
b .
lvll, = lvlly + llaiv vii,
gy
¥
=
:3 where u-uo denotes the Lz—norm. No error estimates were
%
% obtainable for ugfghuo, which is physically of much greater
" interest than estimates for "g*ghﬂ*. The thrust of our work was to
% examine conditions under which optimally accurate approximations
» in the norm ﬂ-uo are obtainable for the problem (7). The high-
R lights of this work are the following: |
-1
X (a) Optimally accurate approximations are obtainable whenever
> the subspace Yb and Sh 'in which we seek our approximate solution
Eﬁ gb "and ¢h, respectively, satisfy the inclusion property
. h . oh - L
= S = div(V') and the decomposition property: every u €V may
be written in the form
? !p - gh + £§
%
i
where
R
aé v . Eh = 0
W
- and
A
! hy.h . h
z Bollw llg < llaiv w'(l_
P~ 0 1
!
where
&]
l; -
A
%
ﬁ

S gy g =y -~y
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Again, bounding Bh by.'Bh > ﬁo uniformly in h is crucial to
.; obtaining optimally accuate approximations;
. (b) An example of a pair yﬁ and Sh satisfying the above

properties was given; and
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(c) Computation using the spaces of (b) were performed,

verifying the optimal theoretical results. Computations using

{

finite element spaces which violate the conditions of (a) were

"
LA

also performed, and non-optimal or divergent approximations

AT

resulted.

o

D. Problems with Inhomogeneous Essential Boundary Conditions

Often, in application, we encounter problems with inhomogeneous

Y

boundary conditions. A simple example is provided by

SRS NN

-Au = f in Q

(9)

u g on T

» aes
a2t e

Ly

where I is the boundary of the region {1 c R™. Ssuch problens

" £
Y W

present difficulties when finite element discretizations are con-

>

sidered, mainly because we cannot satisfy the boundary condition
u =g by functions in finite element spaces. We consider approxi-

mations of the solution of (9) wherein we first choose an approxi-

22 :‘.I-la 4 .“;'..‘4'.4’ 2.4

mation gh, to g, which belongs to the restriction of the finite

*
. s

element space to the boundary. For example, gh could be a
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boundary interpolant of g or an Lz(r)—projection of g. We
then discretize (a), with u = g replaced by u = gh by standard

1 and L2 error

finite element techniques. We derive optimal H
estimate accounting for the differences between g and gh.
Also, we show that such methods are easily implemented. The
analyses and computer implementations were carried out for

second order elliptic boundary valve problems, e.g., such as (S;,

and for the stationary Navier-Stokes equations.

E. Least Squares Finite Element Schemes

An important class of schemes which we have studied are least
squares finite element schemes. Based on past analyses and experi-
ences, we have developed least squares methods for a variety of
flow applications. One interesting application is in transonic
flows around harmonically oscillating wings. Such flows are
governed by mixed type equations, i.e., of mixed hyperbolic/
elliptic type. Assuming that the oscillations are small, one may
derive a set of linear equations for the perturbation flow. These
equations, which are analogous to the Helmholtz equations of
écoustics, aré again of the mixed type. We ha&e developed and
implemented a least squares finite element algorithm for the
approximation of such flows. The most important features of
this algorithm are its insensitivity to the type of the equation
and the frequency of the oscillatory motion, énd to the use of

weighted inner products in order to accurately resolve singulari-

ties, e.g., at the leading edge.




-------------

F. References
! ) [1] Serrin, J., "Mathematical principles of classical fluid mechanics,*

i Handbuch der Physick, 8 (1959), Springer.

x4 {2] Girault, V. and P. Raviart, Finite Element Approximations of the

Navier-Stokes Equation, (1979), Springer.

e [3] Raviart, P. and J. Thomas, “"A mixed finite element method for

2-nd order elliptic problems,” Lecture Notes in Mathematics,

No. 606, (1977), Springer.




l:"‘.{\.';

L f,
Asbhaldn

r-

0
Tl

yrevy )
—‘-‘.".:A

.,

SRt

L

- 4 NN

III. ACTIVITIES

PAPERS PREPARED UNDER GRANT SPONSORSHIP (Copies of these papers'

have been forwarded to AFOSR)

1‘

"Mixed finite element methods with applications to acoustic
and flow problems," Proc. 5th AIAA Comp. Fluids Conf., AIAA
CpP8l4, pp. 265-271; [by G. Fix, M. Gunzburger, R. Nicolaides,
J. Peterson]. |

"On mixed finite element methods for first order elliptic
systems," Num. Math., 37, 1981, pp. 29-48; [by G. Fix,

M. Gunzburger, R. Nicolaides].

"On conforming finite element methods for incompressible-

viscous flow problems," Comp. & Math. with Appls., 8, 1982,

pPp. 167-179; [by M. Gunzburger, R. Nicolaides, J. Peterson].
"On conforming finite element methods for the inhomogeneous
stationary Navier-Stokes equations," to appear, Num. Math.;
[by M. Gunzburger, J. Peterson].

"An application of mixed finite element methods to the
stability of the incompressible Navier-Stokes equation,

to appear, SIAM J. Scient. Stat. Comput.; [by J. Peterson].

"New results in the finite element solutions of steady viscous

flows," The Mathematics of Finite Elements and Applications 1V,

Academic Press, 1982, pp. 463-470; [by M. Gunzburger and

R. Nicolaides].

"On finite element approximations of problems having inhomogeneous

essential boundary conditions," to appear, Comp. & Math. with

Appls.; [by G. Fix, M. Gunzburger and J. Peterson].




Y O LI S o E e e Aol A i e A
-1

X

o

e .

"

. 13
e 8. "A least squares finite element scheme for transonic flow around
(1 . harmonically oscillating wings," fo appear, J. Comp. Phys.;
ﬁ ’ (by C. Cox, G. Fix and M. Gunzburger]. |
g
TALKS PRESENTED UNDER GRANT SPONSORSHIP

E 1. J. S. Peterson, "On mixed finite element methods for the stability
§ of the Navier-Stokes eQuations," SIAM Fall Meeting, Houston, 1980.
b 2. M. D. Gunzburger and R. A. Nicolaides, "Mixed finite element
»3 methods for viscous flow problems," SIAM Fall Meeting, Houston,
, 1980.
.f 3. M. D. Gunzburger, "Finite element approximations of the

ﬁ Navier~Stokes equations," AMS Meeting, Pittsburgh, 1981.

1 4. M. D. Gunzburger, "On mixed finite element methods for acoustic

and flow problems.“ AIAA 5th CFD Conference, Palo Alto, 198l.

f% 5. M. D. Gunzburger and R. A. Nicolaides, "Finite element methods
§ for incompressible viscous flows," SIAM National meeting,

‘ Palo Alto, 1982.
': Ph.D. THESIS PARTIALLY SUPPORTED BY GRANT

é Janet Peterson (Ph.D., 1980, Tennessee) Thesis title: "On mixed

ﬁ finite element methods for eigenvalue problems."

é Jerome Eastham (Ph.D., 1981, Tennessee) Thesis title: "On the

: finite element method in anisotropic Sobolev spaces."

% ’ Georges Guirguis (Ph.D., Tennessee, expected in 1983) Thesis topic:
'g | "Finite element approximations to the Stokes equations in
; exterior domains."”

Q

: !

......................................
..........................................
...........................

*{;.A.a‘-.a—‘




